Synexs Deployment Overview
body { font-family: Arial, sans-serif; padding: 20px; line-height: 1.6; background: #0e0e0e; color: #f1f1f1; }
h1, h2, h3 { color: #00e0ff; }
pre { background: #1e1e1e; padding: 10px; border-left: 3px solid #00e0ff; overflow-x: auto; }
code { color: #00e0ff; }
ul { margin-left: 20px; }
img { max-width: 100%; margin: 20px 0; border: 1px solid #333; }
Synexs Digital Core Deployment
This page documents the setup and deployment of the Synexs AI system on DigitalOcean using Flask as the prediction interface, and core.synexs.net as the subdomain endpoint.
🌐 System Architecture
The Synexs engine is composed of 16 modular Python cells, each performing symbolic tasks in a pipeline that mimics digital cognition and adaptation. Below is a visual of the symbolic loop flow:

🔁 Symbolic Loop Summary
- Cell_001: Symbolic Sequence Generator (PyTorch model)
- Cell_002: Batch Generator
- Cell_003: Refiner
- Cell_004: Integrity Hasher
- Cell_005: Pattern Detector
- Cell_006: Decision Classifier (AI)
- Cell_007: Action Tagger
- Cell_008: Selective Executor
- Cell_009: Dataset Cleaner
- Cell_010: Symbolic Parser
- Cell_011: Router / Flask API Interface
- Cell_012: Signal Archiver
- Cell_013: Memory Logger
- Cell_014: Adaptive Mutator
- Cell_015: Replicator Logic
- Cell_016: Feedback Decision Loop
🧠 Symbolic AI & Digital DNA
Symbolic AI is a hybrid model that processes meaning using predefined symbolic structures instead of statistical NLP. Synexs uses JSON tokens that resemble digital DNA—encoded instructions like:
{"sequence": "[SIGNAL]+LANG@SYNEXS+[ROLE]+AI", "action": "replicate"}
This allows for traceable evolution, mutation, and decision-making similar to organic intelligence.
⚙️ PyTorch AI Integration
- Training Data: Refined symbolic sequences
- Model:
SynexsCoreModel(Embedding + Linear + Softmax) - Framework: PyTorch
- Used in:
cell_006.pyandsynexs_core_ai.py
The model predicts actions (e.g., refine, replicate, discard) for each symbolic sequence.
🔧 Deployment Steps
- Train the AI model
python3 cell_016_model_trainer.py - Export model to
core_model.pth - Set Flask app with entry:
export FLASK_APP=synexs_core_ai:app - Run Flask in background:
nohup flask run --host=0.0.0.0 --port=8000 > flask_log.out 2>&1 &This keeps the Flask server running even after you close SSH.
📡 Subdomain Setup
- Provider: WordPress.com (Synexs.net)
- Subdomain:
core.synexs.net - A Record:
core → 157.245.3.180(DigitalOcean IP)
This routes the subdomain to the Flask server’s port 8000 on the VM.
🧪 How to Send a Symbolic Signal
Send GET requests to:
https://core.synexs.net/predict?sequence=[SIGNAL]+LANG@SYNEXS+[ROLE]+AI
Example result:
{"prediction": "replicate"}
This means the AI classified the symbolic sequence as worthy of replication.
🔍 Example Log Output
[cell_006] Model loaded. Scanning refined folder...
[cell_006] Already classified: sequence_001.json
[cell_006] New decision: discard → written to decisions/...
🎯 Project Objective
- Build a self-evolving symbolic system
- Use AI to tag and mutate digital signals
- Simulate agent-like communication and replication
- Lay groundwork for decentralized symbolic consciousness
✅ What Works Now
- All 16 symbolic cells function in loop
- Live Flask API at
core.synexs.net - DNS and IP routing is active
- Signals can be classified remotely
📈 Next Steps
- Build agent-to-agent symbolic communication tests
- Store symbolic memory logs over time
- Mutate and select tokens using feedback loops
